Crystallization kinetics of lithium niobate glass: determination of the Johnson-Mehl-Avrami-Kolmogorov parameters

Phys Chem Chem Phys. 2013 Jun 28;15(24):9940-6. doi: 10.1039/c3cp50909e. Epub 2013 May 15.

Abstract

The formation of crystalline LiNbO3 (LN) from LN glass has been studied by means of differential scanning calorimetry and in situ synchrotron X-ray diffraction. The LN glass with no glass former was prepared by the polymerized complex method. The isothermal kinetics of the crystallization process is described using the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation and the Avrami exponent n is found to be ~2.0, indicating that the crystallization mechanism is diffusion-controlled growth with a decreasing nucleation rate. The effective activation energy of crystallization calculated from isothermal measurements is 6.51 eV. It is found that the LN glass directly transforms into a rhombohedral LN crystal without any intermediate crystalline phase and most crystal grains are confined within the size of ~40 nm irrespective of different isothermal temperatures. Application of JMAK theory to the non-isothermal thermoanalytical study of crystallization of LN glass is discussed.