Experimental results of revised Misell algorithm for imaging through weakly scattering biological tissue

Appl Opt. 2013 Apr 10;52(11):2300-5. doi: 10.1364/AO.52.002300.

Abstract

A Static random perturbation weakly scattering media may significantly reduce image quality, in many kinds of applications. An example of such a medium can be a soft tissue such as skin or flesh, through which one may wish to image an object, such as a bone, located behind. In this paper we present experimental results of newly developed deblurring approach for obtaining a better image of objects positioned behind static random perturbation media. This approach for extraction of the high spatial frequencies is based on iterative computation similar to the well-known Gerchberg-Saxton algorithm for phase retrieval. By focusing a camera onto three or more planes positioned between the imaging camera and the perturbation media, we are able to retrieve the phase distribution of those planes and then reconstruct the intensity of the object by numerical free-space propagation of this extracted complex field, to the estimated position of the object.

MeSH terms

  • Algorithms*
  • Computer Simulation
  • Image Enhancement / methods*
  • Image Interpretation, Computer-Assisted / methods*
  • Imaging, Three-Dimensional / methods*
  • Light
  • Models, Biological*
  • Reproducibility of Results
  • Scattering, Radiation
  • Sensitivity and Specificity