Thiol-ene/acrylate substrates for softening intracortical electrodes

J Biomed Mater Res B Appl Biomater. 2014 Jan;102(1):1-11. doi: 10.1002/jbmb.32946. Epub 2013 May 13.

Abstract

Neural interfaces have traditionally been fabricated on rigid and planar substrates, including silicon and engineering thermoplastics. However, the neural tissue with which these devices interact is both 3D and highly compliant. The mechanical mismatch at the biotic-abiotic interface is expected to contribute to the tissue response that limits chronic signal recording and stimulation. In this work, novel ternary thiol-ene/acrylate polymer networks are used to create softening substrates for neural recording electrodes. Thermomechanical properties of the substrates are studied through differential scanning calorimetry and dynamic mechanical analysis both before and after exposure physiological conditions. This substrate system softens from more than 1 GPa to 18 MPa on exposure to physiological conditions: reaching body temperature and taking up less than 3% fluid. The impedance of 177 µm(2) gold electrodes electroplated with platinum black fabricated on these substrates is measured to be 206 kΩ at 1 kHz. Specifically, intracortical electrodes are fabricated, implanted, and used to record driven neural activity. This work describes the first substrate system that can use the full capabilities of photolithography, respond to physiological conditions by softening markedly after insertion, and record driven neural activity for 4 weeks.

Keywords: intracortical electrode; neural interface; plasticization; smart polymer; thiol-ene.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Acrylic Resins / chemistry
  • Animals
  • Auditory Cortex / physiology
  • Biocompatible Materials / chemistry
  • Bioengineering
  • Cells, Cultured
  • Electrodes, Implanted*
  • Equipment Design
  • Materials Testing
  • Mice
  • Neurons / physiology
  • Rats

Substances

  • Acrylic Resins
  • Biocompatible Materials
  • carbopol 940