212Pb-radioimmunotherapy potentiates paclitaxel-induced cell killing efficacy by perturbing the mitotic spindle checkpoint

Br J Cancer. 2013 May 28;108(10):2013-20. doi: 10.1038/bjc.2013.189. Epub 2013 Apr 30.

Abstract

Background: Paclitaxel has recently been reported by this laboratory to potentiate the high-LET radiation therapeutic (212)Pb-TCMC-trastuzumab, which targets HER2. To elucidate mechanisms associated with this therapy, targeted α-particle radiation therapeutic (212)Pb-TCMC-trastuzumab together with paclitaxel was investigated for the treatment of disseminated peritoneal cancers.

Methods: Mice bearing human colon cancer LS-174T intraperitoneal xenografts were pre-treated with paclitaxel, followed by treatment with (212)Pb-TCMC-trastuzumab and compared with groups treated with paclitaxel alone, (212)Pb-TCMC-HuIgG, (212)Pb-TCMC-trastuzumab and (212)Pb-TCMC-HuIgG after paclitaxel pre-treatment.

Results: (212)Pb-TCMC-trastuzumab with paclitaxel given 24 h earlier induced increased mitotic catastrophe and apoptosis. The combined modality of paclitaxel and (212)Pb-TCMC-trastuzumab markedly reduced DNA content in the S-phase of the cell cycle with a concomitant increase observed in the G2/M-phase. This treatment regimen also diminished phosphorylation of histone H3, accompanied by an increase in multi-micronuclei, or mitotic catastrophe in nuclear profiles and positively stained γH2AX foci. The data suggests, possible effects on the mitotic spindle checkpoint by the paclitaxel and (212)Pb-TCMC-trastuzumab treatment. Consistent with this hypothesis, (212)Pb-TCMC-trastuzumab treatment in response to paclitaxel reduced expression and phosphorylation of BubR1, which is likely attributable to disruption of a functional Aurora B, leading to impairment of the mitotic spindle checkpoint. In addition, the reduction of BubR1 expression may be mediated by the association of a repressive transcription factor, E2F4, on the promoter region of BubR1 gene.

Conclusion: These findings suggest that the sensitisation to therapy of (212)Pb-TCMC-trastuzumab by paclitaxel may be associated with perturbation of the mitotic spindle checkpoint, leading to increased mitotic catastrophe and cell death.

Publication types

  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents, Phytogenic / pharmacology
  • Antineoplastic Agents, Phytogenic / therapeutic use
  • Cell Death / drug effects
  • Cell Line, Tumor
  • Colonic Neoplasms / drug therapy*
  • Colonic Neoplasms / metabolism
  • Colonic Neoplasms / pathology
  • Colonic Neoplasms / radiotherapy*
  • Combined Modality Therapy
  • Female
  • Humans
  • Lead Radioisotopes / therapeutic use*
  • M Phase Cell Cycle Checkpoints / drug effects*
  • Mice
  • Mice, Nude
  • Paclitaxel / pharmacology
  • Paclitaxel / therapeutic use*
  • Radioimmunotherapy* / methods
  • Treatment Outcome
  • Xenograft Model Antitumor Assays

Substances

  • Antineoplastic Agents, Phytogenic
  • Lead Radioisotopes
  • Paclitaxel