Functional analysis of duplicated genes and N-terminal splice variant of phospholipase C-δ1 in Paralichthys olivaceus

Comp Biochem Physiol B Biochem Mol Biol. 2013 Jul;165(3):201-10. doi: 10.1016/j.cbpb.2013.04.005. Epub 2013 Apr 26.

Abstract

Phosphoinositide-specific phospholipase C δ (PLC δ) plays an important role in many cellular responses and is involved in the production of second messenger. Here, we describe the presence of novel N-terminal extended alternative splice form of PLC-δ1B in Paralichthys olivaceus, which differs from the reported mammalian PLC-δ1 isoform. The two variants PoPLC-δ1B-Lf and PoPLC-δ1B-Sf share exon 3 (including the PH domain) to exon 16, but differ at the exon 1 (Short form: Sf) and novel exon 2 (Long form: Lf) of the transcript. For the characterization of the novel duplicated gene variant of PLC-δ1B in P. olivaceus, tissue-specific expression with RT-PCR and real-time PCR, and purification and enzymatic characterization of native and recombinant proteins of all the three-types of PLC-δ1 isoforms (PoPLC-δ1A, PoPLC-δ1B-Lf and PoPLC-δ1B-Sf) of P. olivaceus were studied. The PoPLC-δ1A was ubiquitously distributed in gill, kidney and spleen. The PoPLC-δ1B-Lf gene was widely detected in various tissues, especially in the digestive system, while PoPLC-δ1B-Sf was highly expressed in the stomach. The recombinant PoPLC-δ1A, PoPLC-δ1B-Lf and PoPLC-δ1B-Sf proteins were expressed as a histidine-tagged fusion protein in Escherichia coli. The PLC activity of the PoPLC-δ1 isoform proteins showed a concentration-dependent activity to phosphatidylinositol (PI) and phosphatidylinositol 4,5-bisphosphate (PIP(2)). In addition, U73122, the PLC inhibitor, effectively inhibited PLC activities of PoPLC-δ1A, PoPLC-δ1B-Lf and PoPLC-δ1B-Sf proteins. However, PoPLC-δ1A and PoPLC-δ1B-Lf were sensitive at pH 7.5, while PoPLC-δ1B-Sf was relatively sensitive at pH 7. These results might be useful for the study of phospholipase C-mediated signal transduction in fish.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alternative Splicing / genetics*
  • Animals
  • DNA, Complementary / genetics
  • Flounder / genetics*
  • Genes, Duplicate / genetics*
  • Phospholipase C delta / genetics*

Substances

  • DNA, Complementary
  • Phospholipase C delta