Rspo 1 promotes osteoblast differentiation via Wnt signaling pathway

Indian J Biochem Biophys. 2013 Feb;50(1):19-25.

Abstract

R-spondin (Rspo)s proteins are a new group of Wnt/beta-catenin signaling agonists. These signaling molecules are known to be involved in the developmental stages of skeletal system. Recent studies in various murine osteoblast models have proposed that Rspo 1 may interact with Wnt signaling pathway to induce differentiation in osteoblasts. Though findings in murine osteoblasts implicate a synergestic role of Rspo 1 with Wnt signaling, still no study has addressed the similar role in more clinically applicable osteoblast models i.e., human cell lines or primary cells. Therefore, in the present study, we investigated the possible role of Rspo 1 during differentiation process of human in vitro osteoblast cell models like primary osteoblasts or human osteoprogenitor cell line hFOB 1.19 along with murine preosteoblast cell line MC3T3 E-1. Our results showed increase in Rspo 1 at transcript level during differentiating phase of human primary osteoblasts and human FOB 1.19 cells. We also found that Rspo 1 (100 ng/mL) acts additively with Wnt3a to activate Wnt signaling, as confirmed by luciferase activity after transfection of TOPFLASH construct to hFOB 1.19 cells. Similar additive role of Rspo 1 and Wnt3a was apparent in alkaline phosphatase (ALP) activity analysis of human primary cells. Moreover, a reduction in ALP activity was observed with knock-down of Rspo 1 by transfected shRNA in hFOB 1.19 cells. These results suggested the possibility of autocrine regulation by Rspo 1 on the osteogenic activities in human in vitro osteoblast models. Furthermore, these results were corroborated in MC3T3-E1, murine osteoblast cell model. Osteoblastic differentiation was induced by transfection of Rspo 1 which was confirmed by increased ALP staining and qRT-PCR analysis of osteogenic markers, such as Runx2 and osteocalcin. In conclusion, present study highlights the role of Rspo 1 in bone remodeling where it activates Wnt signaling to induce differentiation, as shown in human as well murine in vitro osteoblast cell models.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Differentiation
  • Cell Line
  • Humans
  • Mice
  • Osteoblasts / cytology*
  • Osteoblasts / metabolism*
  • Osteogenesis / physiology*
  • Thrombospondins / metabolism*
  • Wnt Proteins / metabolism*
  • Wnt Signaling Pathway / physiology*

Substances

  • RSPO1 protein, human
  • RSPO1 protein, mouse
  • Thrombospondins
  • Wnt Proteins