Comparing functional metabolic effects of marginal and sufficient selenium supply in sheep

J Trace Elem Med Biol. 2013 Oct;27(4):380-90. doi: 10.1016/j.jtemb.2013.03.003. Epub 2013 Mar 14.

Abstract

This study was performed to characterise key data of long-term ovine Se metabolism and to work out the best biomarker of Se status. An upgrade from marginal (<0.05 mg Se/kg diet, 'Se-') to sufficient (0.2mg Se/kg diet, 'Se+') nutritional Se supply using sodium selenite was monitered biweekly by analysing Se concentration, glutathione peroxidase (Gpx) activity and routine biochemistry in blood/serum over 2 years. Se, Cu, Zn, cytosolic Gpx and thioredoxin reductase (TrxR) activity were measured in the liver (biopsies/post-mortem). Se, Gpx, TrxR, glutathione-S-transferase-alpha (aGST) and iodothyronine deiodinase (Dio1) were analysed in the kidney, heart muscle and thyroid. Relative mRNA expression of hepatic aGST1 and Gpx1 was determined. Improvement of Se supply strongly increased serum and liver Se concentration within 10 and 20 days, respectively followed by a plateau. Whereas the achievement of a maximum whole blood Gpx activity was reached after 3 months, serum Gpx3 activity increased with high variations. Hepatic Gpx activity reached a maximum during days 100-200, decreasing thereafter. Distinct group differences in Se and cytosolic Gpx activity were evident in all organs (except Se in kidney). TrxR and Dio1 activity was affected only in the liver. The Se- sheep showed an ongoing decrease in serum Se concentration within 2 years, whereas liver Se remained almost unaffected. High relative Gpx1 mRNA expression in the Se+ group was consensual to high hepatic Gpx activity. Relative mRNA expression of hepatic aGST1 was higher in the Se- sheep. Clinical signs and abnormalities in routine biochemistry were absent. In summary, the best biomarker of Se deprivation and nutritional Se upgrade, respectively was Se in serum. Moreover, hepatic Se concentrations reliably reflected the upgrade of Se supply within days. Whole blood Gpx reacts slowly depending on newly formed erythrocytes restricting its diagnostic use. Vital organs are affected by Se deficiency due to a decrease of cytosolic Gpx activity attenuating the antioxidative system. Cellular up-regulation of aGST1 mRNA expression in the Se- group is assumed to partially compensate for the decreased antioxidant defence due to a loss in Gpx activity. This sheep model appears advantageous for long-term studies on sub-clinical metabolic effects in experimental modifiable nutritional Se supply.

Keywords: Glutathione peroxidase; Glutathione-S-transferase alpha; Iodothyronine deiodinase; Selenium; Thioredoxin reductase.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Dietary Supplements*
  • Selenium / administration & dosage*
  • Selenium / deficiency
  • Selenium / metabolism*
  • Sheep

Substances

  • Selenium