Membrane-associated proteins of ejaculated sperm from Morada Nova rams

Theriogenology. 2013 Jun;79(9):1247-61. doi: 10.1016/j.theriogenology.2013.03.013. Epub 2013 Apr 17.

Abstract

The objective was to describe the profile of membrane proteins from sperm of tropically adapted Morada Nova rams (N = 5). Samples from protein-enriched fractions of ejaculated sperm (containing 400 μg of protein) were separated by two-dimensional electrophoresis and respective maps analyzed using PDQuest software (version 7.3.0; Bio-Rad). Proteins were identified using tandem mass spectrometry. Also, membrane proteins were incubated with antibodies against binder of sperm protein (BSP) 1 and bodhesin 2 (Bdh-2), components of vesicular gland secretion. For membrane proteins of ejaculated sperm, an average of 133 ± 4.6 spots were detected per gel, of which, 107 spots were consistently present on all gels. Sixty-eight spots and 37 proteins were identified using mass spectrometry, corresponding to 71.6% of the intensity of all spots detected. Three major spots identified as ram seminal vesicle protein (RSVP) 14 represented approximately 30% of the intensity of all spots. Two of the most intense spots in the gel reacted against anti-BSP1, at 14 kDa. In addition, four low molecular weight spots reacted with anti-Bdh-2 antibodies. Proteins RSVP and Bdh-2 belong to the BSP and spermadhesin families, respectively, and were previously reported as major components of ram seminal proteins. Additional proteins identified in the sperm membrane two-dimensional maps included alpha-2-heparan sulfate-glycoprotein, plasma glutamate carboxypeptidase, arylsulfatase A, cathelicidin, heat shock protein 70 kDa, angiotensin-converting enzyme, leucine aminopeptidase, and clusterin. Some proteins were present as multiple isoforms, such as tubulin (12), alpha-2-heparan sulfate-glycoprotein (5), ATP synthase (5), Bdh-2 (4) and RSVP14 (3). Based on gene ontology analysis, the most common biological processes associated with the membrane proteins were cellular processes (34%), response to stimulus (14%), and metabolic processes (11%). Binding (37%) and catalytic activity (32%) corresponded to the most frequent molecular functions for those proteins. In conclusion, we identified a diverse cohort of components of membrane proteins in ram sperm. Major proteins previously reported in seminal plasma, such as RSVP14 and Bdh-2, were also extracted from sperm membranes. Knowledge of sperm proteins is crucial for elucidating mechanisms underlying their association with sperm function.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Membrane / chemistry*
  • Gene Expression Regulation / physiology
  • Male
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism*
  • Sheep / physiology*
  • Spermatozoa / physiology*
  • Transcriptome

Substances

  • Membrane Proteins