Neutron reflectometry studies on the lithiation of amorphous silicon electrodes in lithium-ion batteries

Phys Chem Chem Phys. 2013 May 28;15(20):7777-84. doi: 10.1039/c3cp44438d. Epub 2013 Apr 19.

Abstract

Neutron reflectometry is used to study in situ the intercalation of lithium into amorphous silicon electrodes. The experiments are done using a closed three-electrode electrochemical cell setup. As a working electrode, an about 40 nm thick amorphous silicon layer is used that is deposited on a 1 cm thick quartz substrate coated with palladium as a current collector. The counter electrode and the reference electrode are made of lithium metal. Propylene carbonate with 1 M LiClO4 is used as an electrolyte. The utility of the cell is demonstrated during neutron reflectometry measurements where Li is intercalated at a constant current of 100 μA (7.8 μA cm(-2)) for different time steps. The results show (a) that the change in Li content in amorphous silicon and the corresponding volume expansion can be monitored, (b) that the formation of the solid electrolyte interphase becomes visible and (c) that an irreversible capacity loss is present.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electric Power Supplies*
  • Electrochemical Techniques
  • Electrodes
  • Ions / chemistry
  • Lithium / chemistry*
  • Neutron Diffraction
  • Silicon / chemistry*

Substances

  • Ions
  • Lithium
  • Silicon