Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials

ACS Nano. 2013 May 28;7(5):4554-60. doi: 10.1021/nn401256w. Epub 2013 Apr 23.

Abstract

Mechanical energy harvesting based on triboelectric effect has been proven to be a simple, cost-effective, and robust method for electricity generation. In this study, we developed a rationally designed triboelectric nanogenerator (TENG) by utilizing the contact electrification between a polytetrafluoroethylene (PTFE) thin film and a layer of TiO2 nanomaterial (nanowire and nanosheet) array. The as-developed TENG was systematically studied and demonstrated as a self-powered nanosensor toward catechin detection. The high sensitivity (detection limit of 5 μM) and selectivity are achieved through a strong interaction between Ti atoms of TiO2 nanomaterial and enediol group of catechin. The output voltage and current density were increased by a factor of 5.0 and 2.9, respectively, when adsorbed with catechin of a saturated concentration, because of the charge transfer from catechin to TiO2. This study demonstrates the possibility of improving the electrical output of TENG through chemical modification.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.