Nutrient-dependent phosphorylation channels lipid synthesis to regulate PPARα

J Lipid Res. 2013 Jul;54(7):1848-59. doi: 10.1194/jlr.M036103. Epub 2013 Apr 13.

Abstract

Peroxisome proliferator-activated receptor (PPAR)α is a nuclear receptor that coordinates liver metabolism during fasting. Fatty acid synthase (FAS) is an enzyme that stores excess calories as fat during feeding, but it also activates hepatic PPARα by promoting synthesis of an endogenous ligand. Here we show that the mechanism underlying this paradoxical relationship involves the differential regulation of FAS in at least two distinct subcellular pools: cytoplasmic and membrane-associated. In mouse liver and cultured hepatoma cells, the ratio of cytoplasmic to membrane FAS-specific activity was increased with fasting, indicating higher cytoplasmic FAS activity under conditions associated with PPARα activation. This effect was due to a nutrient-dependent and compartment-selective covalent modification of FAS. Cytoplasmic FAS was preferentially phosphorylated during feeding or insulin treatment at Thr-1029 and Thr-1033, which flank a dehydratase domain catalytic residue. Mutating these sites to alanines promoted PPARα target gene expression. Rapamycin-induced inhibition of mammalian/mechanistic target of rapamycin complex 1 (mTORC1), a mediator of the feeding/insulin signal to induce lipogenesis, reduced FAS phosphorylation, increased cytoplasmic FAS enzyme activity, and increased PPARα target gene expression. Rapamycin-mediated induction of the same gene was abrogated with FAS knockdown. These findings suggest that hepatic FAS channels lipid synthesis through specific subcellular compartments that allow differential gene expression based on nutritional status.

Keywords: de novo lipogenesis; peroxisome proliferator-activated receptor α; starvation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cells, Cultured
  • Cytoplasm / enzymology
  • Fatty Acid Synthases / antagonists & inhibitors
  • Fatty Acid Synthases / genetics
  • Fatty Acid Synthases / metabolism*
  • Food*
  • HEK293 Cells
  • Humans
  • Insulin / metabolism
  • Lipids / biosynthesis*
  • Liver / enzymology
  • Male
  • Mechanistic Target of Rapamycin Complex 1
  • Mice
  • Mice, Inbred C57BL
  • Multiprotein Complexes / metabolism
  • PPAR alpha / antagonists & inhibitors
  • PPAR alpha / genetics
  • PPAR alpha / metabolism*
  • Phosphorylation / drug effects
  • Sirolimus / pharmacology
  • TOR Serine-Threonine Kinases / metabolism

Substances

  • Insulin
  • Lipids
  • Multiprotein Complexes
  • PPAR alpha
  • Fatty Acid Synthases
  • Mechanistic Target of Rapamycin Complex 1
  • TOR Serine-Threonine Kinases
  • Sirolimus