Novel monofunctional platinum (II) complex Mono-Pt induces apoptosis-independent autophagic cell death in human ovarian carcinoma cells, distinct from cisplatin

Autophagy. 2013 Jul;9(7):996-1008. doi: 10.4161/auto.24407. Epub 2013 Apr 11.

Abstract

Failure to engage apoptosis appears to be a leading mechanism of resistance to traditional platinum drugs in patients with ovarian cancer. Therefore, an alternative strategy to induce cell death is needed for the chemotherapy of this apoptosis-resistant cancer. Here we report that autophagic cell death, distinct from cisplatin-induced apoptosis, is triggered by a novel monofunctional platinum (II) complex named Mono-Pt in human ovarian carcinoma cells. Mono-Pt-induced cell death has the following features: cytoplasmic vacuolation, caspase-independent, no nuclear fragmentation or chromatin condensation, and no apoptotic bodies. These characteristics integrally indicated that Mono-Pt, rather than cisplatin, initiated a nonapoptotic cell death in Caov-3 ovarian carcinoma cells. Furthermore, incubation of the cells with Mono-Pt but not with cisplatin produced an increasing punctate distribution of microtubule-associated protein 1 light chain 3 (LC3), and an increasing ratio of LC3-II to LC3-I. Mono-Pt also caused the formation of autophagic vacuoles as revealed by monodansylcadaverine staining and transmission electron microscopy. In addition, Mono-Pt-induced cell death was significantly inhibited by the knockdown of either BECN1 or ATG7 gene expression, or by autophagy inhibitors 3-methyladenine, chloroquine and bafilomycin A 1. Moreover, the effect of Mono-Pt involved the AKT1-MTOR-RPS6KB1 pathway and MAPK1 (ERK2)/MAPK3 (ERK1) signaling, since the MTOR inhibitor rapamycin increased, while the MAPK1/3 inhibitor U0126 decreased Mono-Pt-induced autophagic cell death. Taken together, our results suggest that Mono-Pt exerts anticancer effect via autophagic cell death in apoptosis-resistant ovarian cancer. These findings lead to increased options for anticancer platinum drugs to induce cell death in cancer.

Keywords: AKT1; MAPK1/3; autophagy; cisplatin; monofunctional platinum complex.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apoptosis / drug effects*
  • Autophagy / drug effects*
  • Cell Cycle Checkpoints / drug effects
  • Cell Line, Tumor
  • Cisplatin / chemistry*
  • Cisplatin / pharmacology
  • DNA Damage
  • Female
  • Humans
  • Mitogen-Activated Protein Kinases / metabolism
  • Ovarian Neoplasms / pathology*
  • Ovarian Neoplasms / ultrastructure
  • Platinum / chemistry
  • Platinum / pharmacology*
  • Proto-Oncogene Proteins c-akt / metabolism
  • Ribosomal Protein S6 Kinases, 70-kDa / metabolism
  • Signal Transduction / drug effects
  • TOR Serine-Threonine Kinases / metabolism

Substances

  • Platinum
  • MTOR protein, human
  • AKT1 protein, human
  • Proto-Oncogene Proteins c-akt
  • Ribosomal Protein S6 Kinases, 70-kDa
  • TOR Serine-Threonine Kinases
  • ribosomal protein S6 kinase, 70kD, polypeptide 1
  • Mitogen-Activated Protein Kinases
  • Cisplatin