Tripartite efflux pumps: energy is required for dissociation, but not assembly or opening of the outer membrane channel of the pump

Mol Microbiol. 2013 May;88(3):590-602. doi: 10.1111/mmi.12211. Epub 2013 Apr 9.

Abstract

The MtrCDE multidrug pump, from Neisseria gonorrhoeae, is assembled from the inner and outer membrane proteins MtrD and MtrE, which are connected by the periplasmic membrane fusion protein MtrC. Although it is clear that MtrD delivers drugs to the channel of MtrE, it remains unclear how drug delivery and channel opening are connected. We used a vancomycin sensitivity assay to test for opening of the MtrE channel. Cells expressing MtrE or MtrE-E434K were insensitive to vancomycin; but became moderately and highly sensitive to vancomycin respectively, when coexpressed with MtrC, suggesting that the MtrE channel opening requires MtrC binding and is energy-independent. Cells expressing wild-type MtrD, in an MtrCE background, were vancomycin-insensitive, but moderately sensitive in an MtrCE-E434K background. The mutation of residues involved in proton translocation inactivated MtrD and abolished drug efflux, rendered both MtrE and MtrE-E434K vancomycin-insensitive; imply that the pump-component interactions are preserved, and that the complex is stable in the absence of proton flux, thus sealing the open end of MtrE. Following the energy-dependent dissociation of the tripartite complex, the MtrE channel is able to reseal, while MtrE-E434K is unable to do so, resulting in the vancomycin-sensitive phenotype. Thus, our findings suggest that opening of the OMP via interaction with the MFP is energy-independent, while both drug export and complex dissociation require active proton flux.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Outer Membrane Proteins / genetics
  • Bacterial Outer Membrane Proteins / metabolism*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Drug Resistance, Multiple, Bacterial / genetics
  • Escherichia coli / genetics
  • Escherichia coli / growth & development
  • Gene Expression Regulation, Bacterial*
  • Lipoproteins / genetics
  • Lipoproteins / metabolism*
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism
  • Membrane Transport Proteins / genetics
  • Membrane Transport Proteins / metabolism*
  • Mutation
  • Neisseria gonorrhoeae / drug effects
  • Neisseria gonorrhoeae / genetics*
  • Neisseria gonorrhoeae / metabolism
  • Plasmids / genetics
  • Vancomycin / pharmacology

Substances

  • Bacterial Outer Membrane Proteins
  • Bacterial Proteins
  • Lipoproteins
  • Membrane Proteins
  • Membrane Transport Proteins
  • MtrC protein, Neisseria gonorrhoeae
  • MtrD protein, Neisseria gonorrhoeae
  • MtrE protein, Neisseria gonorrhoeae
  • Vancomycin