Lattice Boltzmann implementation of the three-dimensional Ben-Naim potential for water-like fluids

J Chem Phys. 2013 Mar 28;138(12):124105. doi: 10.1063/1.4795008.

Abstract

We develop a three-dimensional lattice Boltzmann (LB) model accounting for directional interactions between water-like molecules, based on the so-called Ben-Naim (BN) potential [A. Ben-Naim, Molecular Theory of Water and Aqueous Solutions: Part I: Understanding Water (World Scientific Publishing Company, 2010); "Statistical mechanics of 'waterlike' particles in two dimensions. I. Physical model and application of the Percus-Yevick equation," J. Chem. Phys. 54, 3682 (1971)]. The water-like molecules are represented by rigid tetrahedra, with two donors and two acceptors at the corners and interacting with neighboring tetrahedra, sitting on the nodes of a regular lattice. The tetrahedra are free to rotate about their centers under the drive of the torque arising from the interparticle potential. The orientations of the water molecules are evolved in time via an overdamped Langevin dynamics for the torque, which is solved by means of a quaternion technique. The resulting advection-diffusion-reaction equation for the quaternion components is solved by a LB method, acting as a dynamic minimizer for the global energy of the fluid. By adding thermal fluctuations to the torque equation, the model is shown to reproduce some microscopic features of real water, such as an average number of hydrogen bonds per molecules (HBs) between 3 and 4, in a qualitative agreement with microscopic water models. Albeit slower than a standard LB solver for ordinary fluids, the present scheme opens up potentially far-reaching scenarios for multiscale applications based on a coarse-grained representation of the water solvent.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Hydrogen Bonding
  • Molecular Dynamics Simulation*
  • Monte Carlo Method
  • Water / chemistry*

Substances

  • Water