How far could the alien boatman Trichocorixa verticalis verticalis spread? Worldwide estimation of its current and future potential distribution

PLoS One. 2013;8(3):e59757. doi: 10.1371/journal.pone.0059757. Epub 2013 Mar 21.

Abstract

Invasions of alien species are considered among the least reversible human impacts, with diversified effects on aquatic ecosystems. Since prevention is the most cost-effective way to avoid biodiversity loss and ecosystem problems, one challenge in ecological research is to understand the limits of the fundamental niche of the species in order to estimate how far invasive species could spread. Trichocorixa verticalis verticalis (Tvv) is a corixid (Hemiptera) originally distributed in North America, but cited as an alien species in three continents. Its impact on native communities is under study, but it is already the dominant species in several saline wetlands and represents a rare example of an aquatic alien insect. This study aims: i) to estimate areas with suitable environmental conditions for Tvv at a global scale, thus identifying potential new zones of invasion; and ii) to test possible changes in this global potential distribution under a climate change scenario. Potential distributions were estimated by applying a multidimensional envelope procedure based on both climatic data, obtained from observed occurrences, and thermal physiological data. Our results suggest Tvv may expand well beyond its current range and find inhabitable conditions in temperate areas along a wide range of latitudes, with an emphasis on coastal areas of Europe, Northern Africa, Argentina, Uruguay, Australia, New Zealand, Myanmar, India, the western boundary between USA and Canada, and areas of the Arabian Peninsula. When considering a future climatic scenario, the suitability area of Tvv showed only limited changes compared with the current potential distribution. These results allow detection of potential contact zones among currently colonized areas and potential areas of invasion. We also identified zones with a high level of suitability that overlap with areas recognized as global hotspots of biodiversity. Finally, we present hypotheses about possible means of spread, focusing on different geographical scales.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biodiversity
  • Climate
  • Climate Change
  • Ecology
  • Ecosystem*
  • Environment
  • Europe
  • Geography
  • Heteroptera / physiology*
  • Introduced Species*
  • New Caledonia
  • North America
  • South Africa

Grants and funding

DSF and LB were supported by the “Juan de la Cierva” and “Ramón y Cajal” programs respectively from the Spanish Ministry of Economy and Competitiveness. JAC and CC were supported by an FPU grant (Spanish Ministry of Education, Culture and Sport) and a JAE grant (CSIC) respectively. The study was partially supported by the projects “Atlas y libro rojo de los coleópteros acuáticos de España peninsular” financed by the Spanish Ministry of the Environment (MIMAN) and “Estructura y dinámica de meta-comunidades de macroinvertebrados en humedales temporales y el papel de la especie invasora Trichocorixa verticalis (P10- RNM-6262)” financed by the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.