Urban warming drives insect pest abundance on street trees

PLoS One. 2013;8(3):e59687. doi: 10.1371/journal.pone.0059687. Epub 2013 Mar 27.

Abstract

Cities profoundly alter biological communities, favoring some species over others, though the mechanisms that govern these changes are largely unknown. Herbivorous arthropod pests are often more abundant in urban than in rural areas, and urban outbreaks have been attributed to reduced control by predators and parasitoids and to increased susceptibility of stressed urban plants. These hypotheses, however, leave many outbreaks unexplained and fail to predict variation in pest abundance within cities. Here we show that the abundance of a common insect pest is positively related to temperature even when controlling for other habitat characteristics. The scale insect Parthenolecanium quercifex was 13 times more abundant on willow oak trees in the hottest parts of Raleigh, NC, in the southeastern United States, than in cooler areas, though parasitism rates were similar. We further separated the effects of heat from those of natural enemies and plant quality in a greenhouse reciprocal transplant experiment. P. quercifex collected from hot urban trees became more abundant in hot greenhouses than in cool greenhouses, whereas the abundance of P. quercifex collected from cooler urban trees remained low in hot and cool greenhouses. Parthenolecanium quercifex living in urban hot spots succeed with warming, and they do so because some demes have either acclimatized or adapted to high temperatures. Our results provide the first evidence that heat can be a key driver of insect pest outbreaks on urban trees. Since urban warming is similar in magnitude to global warming predicted in the next 50 years, pest abundance on city trees may foreshadow widespread outbreaks as natural forests also grow warmer.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Analysis of Variance
  • Animals
  • Cities*
  • Hemiptera / growth & development*
  • North Carolina
  • Parasites / growth & development
  • Quercus / parasitology
  • Temperature*
  • Trees / parasitology*

Grants and funding

This work was supported by a grant from the USGS Southeast Regional Climate Science Center to RRD and SDF. RRD was also supported by NASA Biodiversity Grant (ROSES-NNX09AK22G) and an NSF Career grant (0953390). SDF was also supported by grants from USDA Southern Region IPM (2010-02678), North Carolina Nursery and Landscape Association, the Horticultural Research Institute, and the USDA IR-4 Project. EKM was also funded by the NCSU Department of Entomology and an EPA STAR Fellowship. (URLs: http://www.epa.gov/ncer/fellow/; http://ir4.rutgers.edu; http://www.doi.gov/csc/southeast/index.cfm; http://cce.nasa.gov/cce/biodiversity.htm; http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503214; http://www.cals.ncsu.edu/entomology/; http://www.csrees.usda.gov/funding/rfas/ipm_southern.html; http://www.hriresearch.org; http://www.ncnla.com). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.