Synthesis and evaluation of the antioxidative potential of minoxidil-polyamine conjugates

Biochimie. 2013 Jul;95(7):1437-49. doi: 10.1016/j.biochi.2013.03.009. Epub 2013 Mar 28.

Abstract

A series of conjugates (MNX-CO-PA) of minoxidil (MNX) with the polyamines (PAs) putrescine (PUT), spermidine (SPD) and spermine (SPM) as well as dopamine were produced through activation of MNX with N,N'-carbonyldiimidazole, followed by reaction with dopamine or selectively protected PAs and acid-mediated deprotection. These conjugates together with conjugates of the general type MNX-PA or PA-MNX-PA, readily produced using literature protocols, were tested as antioxidants. The most potent inhibitors of lipid peroxidation were the conjugates MNX-SPM (2, 94%), SPM-MNX-SPM (4, 94%) and MNX-N(4)-SPD (7, 91%) and MNX (91%). The most powerful lipoxygenase (LOX) inhibitors were MNX (IC50 = 20 μM) and the conjugates MNX-N(8)-SPD (9, IC50 = 22.1 μM), MNX-CO-dopamine (11, IC50 = 28 μM) and MNX-N(1)-SPD (8, IC50 = 30 μM). The most interesting conjugates 2, MNX-CO-PUT (5), 8 and 11 as well as MNX were generally found to exhibit weaker (22-36.5%) or no (conjugate 8) anti-inflammatory activity than indomethacin (47%) with the exception of MNX which showed almost equal potency (49%) to indomethacin. The cytocompatibility of conjugates and MNX at the highest concentration of 100 μM showed a survival percentage of 87-107%, with the exception of conjugates with SPM (compound 2) and MNX-CO-SPM (6), which showed considerable cytotoxicity (survival percentage 8-14%). Molecular docking studies were carried on conjugate 9 and the parent compound MNX and were found to be in accordance with our experimental biological results.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anti-Inflammatory Agents / chemical synthesis*
  • Anti-Inflammatory Agents / pharmacology
  • Antioxidants / chemical synthesis*
  • Antioxidants / pharmacology
  • Female
  • Male
  • Minoxidil / chemical synthesis*
  • Minoxidil / pharmacology
  • Polyamines / chemical synthesis*
  • Polyamines / pharmacology
  • Rats
  • Rats, Inbred F344

Substances

  • Anti-Inflammatory Agents
  • Antioxidants
  • Polyamines
  • Minoxidil