Functional small RNAs are generated from select miRNA hairpin loops in flies and mammals

Genes Dev. 2013 Apr 1;27(7):778-92. doi: 10.1101/gad.211698.112. Epub 2013 Mar 27.

Abstract

In the canonical animal microRNA (miRNA) pathway, Drosha generates ∼60- to 70-nucleotide pre-miRNA hairpins that are cleaved by Dicer into small RNA duplexes that load into Argonaute proteins, which retain a single mature strand in the active complex. The terminal loops of some miRNA hairpins regulate processing efficiency, but once liberated by Dicer, they are generally considered nonfunctional by-products. Here, we show that specific miRNA loops accumulate in effector Argonaute complexes in Drosophila and mediate miRNA-type repression. This was unexpected, since endogenous loading of Argonaute proteins was believed to occur exclusively via small RNA duplexes. Using in vitro assays, which recapitulate Argonaute-specific loop loading from synthetic pre-miRNAs and even single-stranded oligoribonucleotides corresponding to miRNA loops, we reveal that the loop-loading mechanism is distinct from duplex loading. We also show that miRNA loops loaded into the miRNA effector AGO1 are subject to 3' resection, and structure-function analyses indicate selectivity of loop loading. Finally, we demonstrate that select miRNA loops in mammals are similarly loaded into Argonaute complexes and direct target repression. Altogether, we reveal a conserved mechanism that yields functional RNAs from miRNA loop regions, broadening the repertoire of Argonaute-dependent regulatory RNAs and providing evidence for functionality of endogenous ssRNA species.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Argonaute Proteins / metabolism
  • Conserved Sequence
  • Drosophila Proteins / metabolism
  • Drosophila melanogaster / genetics*
  • Drosophila melanogaster / metabolism*
  • Gene Expression Regulation
  • Genome-Wide Association Study
  • Mammals
  • Mice
  • MicroRNAs / chemistry
  • MicroRNAs / genetics*
  • MicroRNAs / metabolism*
  • Nucleic Acid Conformation*

Substances

  • AGO1 protein, Drosophila
  • AGO2 protein, Drosophila
  • Argonaute Proteins
  • Drosophila Proteins
  • MicroRNAs