Heat-induced conformational unfolding of fatty acid-free and fatted camel serum albumin: a comparative study

Cell Biochem Biophys. 2013 Nov;67(2):727-34. doi: 10.1007/s12013-013-9562-3.

Abstract

Albumin is a multifunctional non-glycosylated, negatively charged plasma protein, with extraordinary ligand-binding and transport properties, antioxidant functions, and enzymatic activities. Physiologically, albumin transports free fatty acids in plasma and contributes in maintaining colloid osmotic pressure. Recent progresses in using albumin as a versatile protein carrier for drug targeting and for improving the pharmacokinetic profile of peptide or protein-based drugs, increased the attempts for improving albumin stability. Studying the thermal stability of camel albumin may provide us not only new clues for designing recombinant albumins, but also molecular insights on camel physiology. This study aims to determine the thermal stability of camel albumin. Fatted camel serum albumin (FCSA) was purified from blood via combination of Cohn's method and anion-exchange chromatography. Activated charcoal treatment was used to obtain defatted camel serum albumin (CSA). Fluorescence spectroscopy and differential scanning calorimetry (DSC) were used to study thermal denaturation of this protein. The set of fluorescence spectra were deconvoluted using the convex constraint analysis method (CCA). The results from deconvolution of fluorescence spectroscopy and DSC showed three and two components for CSA and FCSA, respectively. The bimodal DSC transition can be attributed to a crevice between domains I and II and formation of two independent thermodynamic domains. The crevice formation can be prevented by fatty acid binding between domains I and II. The calculated values of ∆H v/∆H cal, approximately 0.4 for CSA and near 1 for FCSA, confirmed the presence of at least one intermediate in thermal unfolding of CSA and the absence of the intermediate for FCSA. The obtained midpoint transition temperature (T m) of FCSA was about 20 °C higher than that of CSA. Such enormous stabilizing effect may be attributed to the fact that fatty acid serves as glue which preserves different domains beside each other and prevents formation of the mentioned intermediate.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Camelus*
  • Cattle
  • Fatty Acids / metabolism*
  • Hot Temperature*
  • Humans
  • Protein Stability
  • Protein Unfolding*
  • Serum Albumin / chemistry*
  • Serum Albumin / metabolism*

Substances

  • Fatty Acids
  • Serum Albumin