Peroxisome proliferator-activated receptors and Alzheimer's disease: hitting the blood-brain barrier

Mol Neurobiol. 2013 Dec;48(3):438-51. doi: 10.1007/s12035-013-8435-5. Epub 2013 Mar 14.

Abstract

The blood-brain barrier (BBB) is often affected in several neurodegenerative disorders, such as Alzheimer's disease (AD). Integrity and proper functionality of the neurovascular unit are recognized to be critical for maintenance of the BBB. Research has traditionally focused on structural integrity more than functionality, and BBB alteration has usually been explained more as a consequence than a cause. However, ongoing evidence suggests that at the early stages, the BBB of a diseased brain often shows distinct expression patterns of specific carriers such as members of the ATP-binding cassette (ABC) transport protein family, which alter BBB traffic. In AD, amyloid-β (Aβ) deposits are a pathological hallmark and, as recently highlighted by Cramer et al. (2012), Aβ clearance is quite fundamental and is a less studied approach. Current knowledge suggests that BBB traffic plays a more important role than previously believed and that pharmacological modulation of the BBB may offer new therapeutic alternatives for AD. Recent investigations carried out in our laboratory indicate that peroxisome proliferator-activated receptor (PPAR) agonists are able to prevent Aβ-induced neurotoxicity in hippocampal neurons and cognitive impairment in a double transgenic mouse model of AD. However, even when enough literature about PPAR agonists and neurodegenerative disorders is available, the problem of how they exert their functions and help to prevent and rescue Aβ-induced neurotoxicity is poorly understood. In this review, along with highlighting the main features of the BBB and its role in AD, we will discuss information regarding the modulation of BBB components, including the possible role of PPAR agonists as BBB traffic modulators.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Alzheimer Disease / metabolism*
  • Alzheimer Disease / pathology*
  • Animals
  • Blood-Brain Barrier / metabolism*
  • Blood-Brain Barrier / pathology*
  • Humans
  • Models, Biological
  • Peroxisome Proliferator-Activated Receptors / metabolism*

Substances

  • Peroxisome Proliferator-Activated Receptors