Effect of fluctuating rhizosphere redox potential on carbon assimilation ofSpartina alterniflora

Oecologia. 1989 Mar;80(1):132-5. doi: 10.1007/BF00789942. Epub 2013 Mar 13.

Abstract

Spartina alterniflora Lois. plants from a Louisiana salt marsh were subjected to fluctuating levels of soil redox potential under controlled environmental conditions. The experiment was designed to examine the changes in carbon assimilation rates in response to the change in rhizosphere sediment redox condition representing a broad range of reduction normally associated with oxygen deficient environments. Variation in sediment redox potential is frequently encountered by this species in its natural environment in Louisiana's Gulf Coast marshes as a result of tidal patterns. Results indicated some adverse effects of extreme anoxic conditions on carbon assimilation ofS. alterniflora, a possible reflection of this species limited ability for maintaining root oxygenation under rapid, intense reduction in soil redox potential. It was also demonstrated that gas exchange limitations may be temporary and apparently may follow by some recovery. Carbon assimilation rates declined 15 to 21% when soil redox level decreased rapidly to below-200 mV which was followed by substantial recovery. A system for accurate control and measurement of rhizosphere redox potential and simultaneous measurement of plant photosynthetic activity is described.