Photocatalytic cross-coupling of methanol and formaldehyde on a rutile TiO2(110) surface

J Am Chem Soc. 2013 Apr 3;135(13):5212-9. doi: 10.1021/ja400978r. Epub 2013 Mar 22.

Abstract

The photocatalytic oxidation of methanol on a rutile TiO2(110) surface was studied by means of thermal desorption spectroscopy (TDS) and X-ray photoelectron spectroscopy (XPS). The combined TDS and XPS results unambiguously identify methyl formate as the product in addition to formaldehyde. By monitoring the evolution of various surface species during the photocatalytic oxidation of methanol on TiO2(110), XPS results give direct spectroscopic evidence for the formation of methyl formate as the product of photocatalytic cross-coupling of chemisorbed formaldehyde with chemisorbed methoxy species and clearly demonstrate that the photocatalytic dissociation of chemisorbed methanol to methoxy species occurs and contributes to the photocatalytic oxidation of methanol. These results not only greatly broaden and deepen the fundamental understanding of photochemistry of methanol on the TiO2 surface but also demonstrate a novel green and benign photocatalytic route for the synthesis of esters directly from alcohols or from alcohols and aldehydes.