Reexamination of the role of nonhydrolyzable guanosine 5'-triphosphate analogues in tubulin polymerization: reaction conditions are a critical factor for effective interactions at the exchangeable nucleotide site

Biochemistry. 1990 Mar 20;29(11):2720-9. doi: 10.1021/bi00463a015.

Abstract

Recently it was proposed [O'Brien, E. T., & Erickson, H. P. (1989) Biochemistry 28, 1413-1422] that tubulin polymerization supported by guanosine 5'-(beta,gamma-imidotriphosphate) [p(NH)ppG], guanosine 5'-(beta,gamma-methylenetriphosphate) [p(CH2)ppG], and ATP might be due to residual GTP in reaction mixtures and that these nucleotides would probably support only one cycle of assembly. Since we had observed polymerization with these three compounds, we decided to study these reactions in greater detail in two systems. The first contained purified tubulin and a high concentration of glycerol, the second tubulin and microtubule-associated proteins (MAPs). In both systems, reactions supported by nucleotides other than GTP were most vigorous at lower pH values. In the glycerol system, repeated cycles of polymerization were observed with ATP and p(CH2)ppG, but not with p(NH)ppG. With p(NH)ppG, a single cycle of polymerization was observed, and this was caused by contaminating GTP. In the MAPs system, repeated cycles of polymerization were observed with both nonhydrolyzable GTP analogues, even without contaminating GTP, but ATP was not active at all in this system. Binding to tubulin of p(NH)ppG, p(CH2)ppG, and, to a lesser extent, ATP was demonstrated indirectly, since high concentrations of the three nucleotides displaced radiolabeled GDP originally bound in the exchangeable site, with p(NH)ppG the most active of the three compounds in this displacement assay. The failure of GTP-free p(NH)ppG to support tubulin polymerization in our glycerol system even though it displaced GDP from the exchangeable site was further investigated by examining the effects of p(NH)ppG on polymerization and polymer-bound nucleotide with low concentrations of GTP. The two nucleotides appeared to act synergistically in supporting polymerization, so that a reaction occurred with a subthreshold GTP concentration if p(NH)ppG was also in the reaction mixture. Analysis of radiolabeled exchangeable-site nucleotide in polymers formed in reaction mixtures containing both GTP and p(NH)ppG demonstrated that p(NH)ppG which entered polymer did so primarily at the expense of GDP originally bound in the exchangeable site rather than at the expense of GTP. It appears that in the glycerol reaction condition, tubulin-p(NH)ppG cannot initiate tubulin polymerization but that it can participate in polymer elongation. ATP and p(CH2)ppG also entered the exchangeable site during polymerization without GTP in glycerol, as demonstrated by displacement of radiolabeled GDP from polymer when these alternate nucleotides were used.(ABSTRACT TRUNCATED AT 400 WORDS)

MeSH terms

  • Adenosine Triphosphate / pharmacology
  • Animals
  • Cattle
  • Glycerol
  • Guanosine Triphosphate / analogs & derivatives*
  • Hydrolysis
  • Microtubule-Associated Proteins / metabolism
  • Microtubules / drug effects
  • Microtubules / metabolism*
  • Tubulin / metabolism*

Substances

  • Microtubule-Associated Proteins
  • Tubulin
  • Guanosine Triphosphate
  • Adenosine Triphosphate
  • Glycerol