Effect of hydrogen on O2 adsorption and dissociation on a TiO2 anatase (001) surface

Chemphyschem. 2013 Apr 2;14(5):996-1002. doi: 10.1002/cphc.201201048. Epub 2013 Mar 4.

Abstract

The effect of hydrogen on the adsorption and dissociation of the oxygen molecule on a TiO2 anatase (001) surface is studied by first-principles calculations coupled with the nudged elastic band (NEB) method. Hydrogen adatoms on the surface can increase the absolute value of the adsorption energy of the oxygen molecule. A single H adatom on an anatase (001) surface can lower dramatically the dissociation barrier of the oxygen molecule. The adsorption energy of an O2 molecule is high enough to break the O=O bond. The system energy is lowered after dissociation. If two H adatoms are together on the surface, an oxygen molecule can be also strongly adsorbed, and the adsorption energy is high enough to break the O=O bond. However, the system energy increases after dissociation. Because dissociation of the oxygen molecule on a hydrogenated anatase (001) surface is more efficient, and the oxygen adatoms on the anatase surface can be used to oxidize other adsorbed toxic small gas molecules, hydrogenated anatase is a promising catalyst candidate.