The perchlorotriphenylmethyl (PTM) radical

Acta Crystallogr C. 2013 Mar;69(Pt 3):255-7. doi: 10.1107/S0108270113002072. Epub 2013 Feb 5.

Abstract

In spite of the considerable understanding and development of perchlorotriphenylmethyl (PTM) radical derivatives, the preparation of crystals of the pure unsubstituted PTM radical, C19Cl15, suitable for single-crystal X-ray diffraction has remained a challenge since its discovery, and only two studies dealing with the crystal structure of the unsubstituted PTM radical have been published. In one study, the radical forms clathrates with aromatic solvents [Veciana, Carilla, Miravitlles & Molins (1987). J. Chem. Soc. Chem. Commun. pp. 812-814], and in the other the structure was determined ab initio from powder X-ray diffraction data [Rius, Miravitlles, Molins, Crespo & Veciana (1990). Mol. Cryst. Liq. Cryst. 187, 155-163]. We report here the preparation of PTM crystals for single-crystal X-ray diffraction and their resolution. The structure, which shows monoclinic symmetry (C2/c), revealed a nonsymmetric molecular propeller conformation (D3 symmetry) caused by the steric strain between the ortho-Cl atoms, which protect the central C atom (sp(2)-hybridization and major spin density) and give high chemical and thermal persistence to the PTM. The supramolecular structure of PTM shows short Cl...Cl intermolecular interactions and can be described in terms of layers formed by rows of molecules positioned in a head-to-tail manner along the c axis.