Intragenesis and cisgenesis as alternatives to transgenic crop development

Plant Biotechnol J. 2013 May;11(4):395-407. doi: 10.1111/pbi.12055. Epub 2013 Feb 20.

Abstract

One of the major concerns of the general public about transgenic crops relates to the mixing of genetic materials between species that cannot hybridize by natural means. To meet this concern, the two transformation concepts cisgenesis and intragenesis were developed as alternatives to transgenesis. Both concepts imply that plants must only be transformed with genetic material derived from the species itself or from closely related species capable of sexual hybridization. Furthermore, foreign sequences such as selection genes and vector-backbone sequences should be absent. Intragenesis differs from cisgenesis by allowing use of new gene combinations created by in vitro rearrangements of functional genetic elements. Several surveys show higher public acceptance of intragenic/cisgenic crops compared to transgenic crops. Thus, although the intragenic and cisgenic concepts were introduced internationally only 9 and 7 years ago, several different traits in a variety of crops have currently been modified according to these concepts. Five of these crops are now in field trials and two have pending applications for deregulation. Currently, intragenic/cisgenic plants are regulated as transgenic plants worldwide. However, as the gene pool exploited by intragenesis and cisgenesis are identical to the gene pool available for conventional breeding, less comprehensive regulatory measures are expected. The regulation of intragenic/cisgenic crops is presently under evaluation in the EU and in the US regulators are considering if a subgroup of these crops should be exempted from regulation. It is accordingly possible that the intragenic/cisgenic route will be of major significance for future plant breeding.

Publication types

  • Review

MeSH terms

  • Crops, Agricultural / genetics*
  • Crops, Agricultural / physiology
  • Genetic Engineering / methods*
  • Hybridization, Genetic
  • Plants, Genetically Modified / genetics*
  • Plants, Genetically Modified / physiology