Colloidal stability of iron oxide nanocrystals coated with a PEG-based tetra-catechol surfactant

Nanotechnology. 2013 Mar 15;24(10):105702. doi: 10.1088/0957-4484/24/10/105702. Epub 2013 Feb 15.

Abstract

Long-term colloidal stability of magnetic iron oxide nanoparticles (NPs) is an important goal that has not yet been fully achieved. To make an advance in our understanding of the colloidal stability of iron oxide NPs in aqueous media, we prepared NPs comprising a monodisperse (13 nm) iron oxide core coated with a PEG-based (PEG: polyethyleneglycol) surfactant. This consists of a methoxy-terminated PEG chain (MW = 5000 Da) bearing four catechol groups via a diethylenetriamine linker. The surfactant was grafted onto the nanocrystals by ligand exchange monitored by infrared spectroscopy. The colloidal stability of these nanoparticles was probed by monitoring the time evolution of the Z-average intensity-weighted radius R(h) and volume-weighted size distribution P(v) obtained from analysis of dynamic light scattering data. The nanoparticles showed no sign of aggregation for four months in deionized water at room temperature and also when subjected to thermal cycling between 25 and 75 °C. In 0.01 M PBS (phosphate buffered saline), aggregation (if any) is slow and partial; after 66 h, about 50% of NPs have not aggregated. Aggregation is more effective in 0.15 M NH(4)AcO buffer, where isolated particles are not observed after 66 h, and especially in acidic NH(4)AcO/AcOH buffer, where aggregation is complete within 1 h and precipitation is observed. The differing stability of the NPs in the above aqueous media is closely related to their ζ potential.

Publication types

  • Research Support, Non-U.S. Gov't