The sinR ortholog PGN_0088 encodes a transcriptional regulator that inhibits polysaccharide synthesis in Porphyromonas gingivalis ATCC 33277 biofilms

PLoS One. 2013;8(2):e56017. doi: 10.1371/journal.pone.0056017. Epub 2013 Feb 6.

Abstract

Biofilm-forming cells are distinct from well characterized planktonic cells and aggregate in the extracellular matrix, the so-called extracellular polymeric substances (EPS). The sinR gene of Bacillus subtilis encodes a transcriptional regulator that is known to be involved in the biosynthesis of EPS in biofilms. Porphyromonas gingivalis inhabits the subgingival and extraradicular biofilm of humans and is one of the primary pathogens that cause progressive marginal and refractory apical periodontitis. Furthermore, P. gingivalis possesses PGN_0088, which encodes a putative ortholog of B. subtilis sinR. Here, we investigated the role of PGN_0088 (sinR) on biofilm formation. P. gingivalis strains formed biofilms on saliva-coated glass surfaces in phosphate buffered saline. Quantitative analysis indicated that the biofilm of the sinR null mutant consisted of dense exopolysaccharide. Microscopic observations showed that the increased levels of exopolysaccharide produced by the sinR mutant changed the morphology of the EPS to a mesh-liked structure. Furthermore, physical analyses suggested that the enrichment of exopolysaccharide in the EPS enhanced the resistance of the biofilm to hydrodynamic shear force. The results presented here demonstrate sinR plays important roles in the ability of P. gingivalis strain ATCC 33277 to act as a negative mediator of exopolysaccharide accumulation and is indirectly associated with the structure of the EPS and the force of its adhesion to surfaces.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacillus subtilis / physiology*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Biofilms*
  • Blotting, Southern
  • DNA, Bacterial / genetics
  • Gene Expression Regulation, Bacterial
  • Microscopy, Electron, Scanning
  • Mutation / genetics
  • Polysaccharides
  • Porphyromonas gingivalis / metabolism*
  • Promoter Regions, Genetic / genetics
  • Transcription, Genetic / physiology*

Substances

  • Bacterial Proteins
  • DNA, Bacterial
  • Polysaccharides
  • FlaD protein, Bacteria

Grants and funding

This study was supported by Grants-in-Aid for Scientific Research (20249076, 24390424 and 24890118) from the Japan Society for the Promotion of Science (http://www.jsps.go.jp/english/index.html). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.