Resistance to a rhabdovirus (VHSV) in rainbow trout: identification of a major QTL related to innate mechanisms

PLoS One. 2013;8(2):e55302. doi: 10.1371/journal.pone.0055302. Epub 2013 Feb 4.

Abstract

Health control is a major issue in animal breeding and a better knowledge of the genetic bases of resistance to diseases is needed in farm animals including fish. The detection of quantitative trait loci (QTL) will help uncovering the genetic architecture of important traits and understanding the mechanisms involved in resistance to pathogens. We report here the detection of QTL for resistance to Viral Haemorrhagic Septicaemia Virus (VHSV), a major threat for European aquaculture industry. Two induced mitogynogenetic doubled haploid F2 rainbow trout (Oncorhynchus mykiss) families were used. These families combined the genome of susceptible and resistant F0 breeders and contained only fully homozygous individuals. For phenotyping, fish survival after an immersion challenge with the virus was recorded, as well as in vitro virus replication on fin explants. A bidirectional selective genotyping strategy identified seven QTL associated to survival. One of those QTL was significant at the genome-wide level and largely explained both survival and viral replication in fin explants in the different families of the design (up to 65% and 49% of phenotypic variance explained respectively). These results evidence the key role of innate defence in resistance to the virus and pave the way for the identification of the gene(s) responsible for resistance. The identification of a major QTL also opens appealing perspectives for selective breeding of fish with improved resistance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Aquaculture
  • Chromosome Mapping
  • Female
  • Genome*
  • Genotype
  • Hemorrhagic Septicemia, Viral / genetics*
  • Hemorrhagic Septicemia, Viral / immunology
  • Hemorrhagic Septicemia, Viral / mortality
  • Hemorrhagic Septicemia, Viral / virology
  • Homozygote
  • Immunity, Innate / genetics*
  • Male
  • Novirhabdovirus / physiology*
  • Oncorhynchus mykiss / genetics*
  • Oncorhynchus mykiss / immunology
  • Oncorhynchus mykiss / virology
  • Phenotype
  • Quantitative Trait Loci / immunology*
  • Survival Rate
  • Tissue Culture Techniques
  • Virus Replication

Grants and funding

The research leading to these results has received co-funding from European Community (IFOP) and French Ministry of Research (grant agreement DPMA/CIPA/INRA No. 2004/190, AGENOP project) and funding from the European Community’s Seventh Framework Programme (FP7, 2007–2013), Research Infrastructures action, under the grant agreement No. FP7-228394 (NADIR). E.R. VERRIER is a recipient of a PhD fellowship co-funded by Animal Genetics and Animal Health Divisions of INRA. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.