Highly tunable nanoscale metal-insulator-metal split ring core ring resonators (SRCRRs)

Opt Express. 2013 Jan 14;21(1):79-86. doi: 10.1364/OE.21.000079.

Abstract

A class of nano-scale wavelength-selective optical filters is proposed where the core of a metal-insulator-metal square ring is replaced with a split-ring core (SRC). The proposed resonator supports split-ring-resonator-like (SRR-like) resonant modes that are characteristics of the structure. These resonant modes are highly adjustable, via the gap size of the split-ring core, over a range of hundreds of nanometers. The proposed resonator can also incorporate tunable materials localized in the gap of the SRC or placed throughout the resonating path. By varying the refractive index (1 to 2) of the material in the gap of the SRC, first and second SRR-like modes can be tuned over ~200 and 300 nm, respectively. A circuit model based on transmission-line theory is proposed for the structure and used to derive the resonance conditions of the split-ring-resonator-like modes; the model compares favorably to the numerical results. The proposed resonator has the potential to be utilized effectively in integrated nano-scale optical switches and tunable filters.