Minimal peptide motif for non-covalent peptide-heparin hydrogels

J Am Chem Soc. 2013 Feb 27;135(8):2919-22. doi: 10.1021/ja312022u. Epub 2013 Feb 12.

Abstract

Reduction of complexity of the extracellular matrix (ECM) to a non-covalent structure with minimal chemically defined components represents an attractive avenue for understanding the biology of the ECM. The resulting system could lead to the design of tailor-made biomaterials that incorporate varying functionalities. Negatively charged glycosaminoglycans are the major components of the ECM. Their interaction with positively charged proteins is important for dynamic three-dimensional scaffold formation and function. We designed and screened minimal peptide motifs whose conjugates with polyethylene glycol interact with heparin to form non-covalent hydrogels. Here we show the structure/function relationship of the (RA)(n) and (KA)(n) motifs and determined that both basic residues and the heparin-induced α-helix formation are important for the assembly process. Simple rules allowed us to tune various aspects of the matrix system such as the gelation rates, biodegradability, rheological properties, and biofunctionality. The hydrogels can encapsulate cells and support cell survival.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Extracellular Matrix / chemistry*
  • Heparin / chemistry*
  • Hydrogels*
  • Molecular Sequence Data
  • Peptides / chemistry*

Substances

  • Hydrogels
  • Peptides
  • Heparin