Optimization of thickness uniformity of optical coatings on a conical substrate in a planetary rotation system

Appl Opt. 2013 Feb 1;52(4):B26-32. doi: 10.1364/AO.52.000B26.

Abstract

For a coating machine with a planetary rotation system and counterrotating shadowing mask configuration, a shadowing mask was designed using a numerical optimization algorithm to control the thickness uniformity of optical coatings formed on conical substrate. Single-layer magnesium fluoride (MgF(2)) and antireflective (AR) coating at 193 nm were fabricated on a convex conical substrate holder (with diameter 225 mm, apex angle 140 deg, and height 41 mm) by thermal evaporation. Thickness distribution determined from the transmittance spectra of single-layer MgF(2) thin films on BK7 slices showed that uniformities better than 99.3% were experimentally achieved with the designed counterrotating shadowing mask. From the reflectance spectra, uniform optical performance was also obtained for the 193 nm AR coating deposited on fused-silica substrates.