Highly efficient gel-state dye-sensitized solar cells prepared using poly(acrylonitrile-co-vinyl acetate) based polymer electrolytes

Phys Chem Chem Phys. 2013 Mar 14;15(10):3640-5. doi: 10.1039/c3cp50170a. Epub 2013 Feb 6.

Abstract

Poly(acrylonitrile-co-vinyl acetate) (PAN-VA) is utilized as a gelation agent to prepare gel-state electrolytes for dye-sensitized solar cell (DSSC) applications. Based on the synergistic effect of PAN-VA and TiO(2) fillers in the electrolyte, the gel-state DSSC can achieve a conversion efficiency higher than that of a liquid counterpart. The high performance of the gel-electrolyte is attributed to the in situ gelation property of the gel-electrolyte, the contribution of the PAN-VA to the charge transfer, as well as the enhancement effect of TiO(2) fillers on the charge transfer at the Pt-electrolyte interface. The experimental results show that the efficiencies of the gel-state cells have little dependence on the conductivity of the electrolytes with various contents of PAN-VA, but are closely related to the penetration situation of the electrolyte in the TiO(2) film. For PAN-VA concentrations ≤15 wt%, the electrolyte can be easily injected at room temperature based on its in situ gelation property. For higher PAN-VA concentrations, good penetration of the high viscous electrolyte can be achieved by elevating the operation temperature. By utilizing a heteroleptic ruthenium dye (coded CYC-B11), gel-state DSSCs with an efficiency of above 10% are obtained. Acceleration tests show that the cell is stable under one-sun illumination at 60 °C.