Time- and momentum-resolved phonon-induced relaxation dynamics in carbon nanotubes

J Phys Condens Matter. 2013 Mar 13;25(10):105301. doi: 10.1088/0953-8984/25/10/105301. Epub 2013 Feb 4.

Abstract

Applying the density matrix formalism, we obtain microscopic access to the time- and momentum-resolved carrier relaxation dynamics driven by acoustic and optical phonons in semiconducting carbon nanotubes. Our calculations predict two clearly distinguishable relaxation times: the ultrafast component in the femtosecond range is ascribed to the scattering with optical phonons, while the slower component on a time scale of a few picoseconds stems from acoustic phonons. Investigating a number of different nanotubes sheds light on the diameter and chirality dependence of the phonon-induced carrier relaxation dynamics. The difference in the carrier-phonon coupling elements and in the dispersion relation for optical and acoustic phonons explains the significant variation in the efficiency of the corresponding relaxation channels.

Publication types

  • Research Support, Non-U.S. Gov't