A preliminary study of the whole-genome expression profile of sporadic and monogenic early-onset Alzheimer's disease

Neurobiol Aging. 2013 Jul;34(7):1772-8. doi: 10.1016/j.neurobiolaging.2012.12.026. Epub 2013 Jan 28.

Abstract

Alzheimer's disease (AD) is the most common neurodegenerative dementia. Approximately 10% of cases present at an age of onset before 65 years old, which in turn can be monogenic familial AD (FAD) or sporadic early-onset AD (sEOAD). Mutations in PSEN1, PSEN2, and APP genes have been linked with FAD. The aim of our study is to describe the brain whole-genome RNA expression profile of the posterior cingulate area in sEOAD and FAD caused by PSEN1 mutations (FAD-PSEN1). Fourteen patients (7 sEOAD and 7 FAD-PSEN1) and 7 neurologically healthy control subjects were selected and whole-genome expression was measured using Affymetrix Human Gene 1.1 microarrays. We identified statistically significant expression changes in sEOAD and FAD-PSEN1 brains with respect to control subjects (3183 and 3350 differentially expressed genes [DEG] respectively, false discovery rate-corrected p < 0.05). Of them, 1916 DEG were common between the 2 comparisons. We did not identify DEG between sEOAD and FAD-PSEN1. Microarray data were validated through real-time quantitative polymerase chain reaction. In silico analysis of DEG revealed an alteration in biological pathways related to intracellular signaling pathways (particularly calcium signaling), neuroactive ligand-receptor interactions, axon guidance, and long-term potentiation in both groups of patients. In conclusion, the altered biological final pathways in sEOAD and FAD-PSEN1 are mainly related with cell signaling cascades, synaptic plasticity, and learning and memory processes. We hypothesize that these 2 groups of early-onset AD with distinct etiologies and likely different could present a neurodegenerative process with potential different pathways that might converge in a common and similar final stage of the disease.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Alzheimer Disease / diagnosis*
  • Alzheimer Disease / genetics*
  • Female
  • Gene Expression Profiling / methods*
  • Genome, Human / genetics*
  • Gyrus Cinguli / pathology
  • Gyrus Cinguli / physiology
  • Humans
  • Male
  • Middle Aged
  • Presenilin-1 / genetics

Substances

  • PSEN1 protein, human
  • Presenilin-1