High accuracy correction of blackbody radiation shift in an optical lattice clock

Phys Rev Lett. 2012 Dec 28;109(26):263004. doi: 10.1103/PhysRevLett.109.263004. Epub 2012 Dec 27.

Abstract

We have determined the frequency shift that blackbody radiation is inducing on the 5s2 (1)S0-5s5p (3)P0 clock transition in strontium. Previously its uncertainty limited the uncertainty of strontium lattice clocks to 1×10(-16). Now the uncertainty associated with the blackbody radiation shift correction translates to a 5×10(-18) relative frequency uncertainty at room temperature. Our evaluation is based on a measurement of the differential dc polarizability of the two clock states and on a modeling of the dynamic contribution using this value and experimental data for other atomic properties.