Interplay between the Beale-Kato-Majda theorem and the analyticity-strip method to investigate numerically the incompressible Euler singularity problem

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Dec;86(6 Pt 2):066302. doi: 10.1103/PhysRevE.86.066302. Epub 2012 Dec 5.

Abstract

Numerical simulations of the incompressible Euler equations are performed using the Taylor-Green vortex initial conditions and resolutions up to 4096^{3}. The results are analyzed in terms of the classical analyticity-strip method and Beale, Kato, and Majda (BKM) theorem. A well-resolved acceleration of the time decay of the width of the analyticity strip δ(t) is observed at the highest resolution for 3.7<t<3.85 while preliminary three-dimensional visualizations show the collision of vortex sheets. The BKM criterion on the power-law growth of the supremum of the vorticity, applied on the same time interval, is not inconsistent with the occurrence of a singularity around t≃4. These findings lead us to investigate how fast the analyticity-strip width needs to decrease to zero in order to sustain a finite-time singularity consistent with the BKM theorem. A simple bound of the supremum norm of vorticity in terms of the energy spectrum is introduced and used to combine the BKM theorem with the analyticity-strip method. It is shown that a finite-time blowup can exist only if δ(t) vanishes sufficiently fast at the singularity time. In particular, if a power law is assumed for δ(t) then its exponent must be greater than some critical value, thus providing a new test that is applied to our 4096^{3} Taylor-Green numerical simulation. Our main conclusion is that the numerical results are not inconsistent with a singularity but that higher-resolution studies are needed to extend the time interval on which a well-resolved power-law behavior of δ(t) takes place and check whether the new regime is genuine and not simply a crossover to a faster exponential decay.

Publication types

  • Research Support, Non-U.S. Gov't