Mechanism for 193-nm laser radiation-induced effects on mammalian cells

Radiat Res. 1990 May;122(2):142-8.

Abstract

The cellular sites for damage in mammalian cells caused by 193-nm radiation from an argon fluoride excimer laser were investigated. The ability of Chinese hamster ovary cells to reduce a tetrazolium dye (MTT) was decreased to 37% of unirradiated control by 2.5 x 10(3) J/m2 of 193-nm radiation when measured either 4 or 24 h after irradiation. In contrast, inhibition of MTT reduction by 254-nm radiation which primarily causes DNA damage was not measurable using this assay at 4 h after exposure; at 24 h 45 J/m2 inhibited MTT reduction to 37% of control. An increase in plasma membrane permeability, detected by 51Cr release, was observed within 15 min of exposure to 193-nm radiation, whereas exposure to 254-nm radiation did not cause this immediate release of 51Cr. In control experiments, the mitochondrial poison, carbonyl cyanide m-chlorophenyl hydrazone, did not cause 51Cr release in the dark, indicating that the 193-nm radiation-induced increase in plasma membrane permeability was not subsequent to loss of mitochondrial function. [3H]-Arachidonic acid was released from C3H10T1/2 cells using low 193-nm fluences, whereas release of [3H]arachidonic acid using UVB (290-32 nm) radiation required cytotoxic fluences. DNA does not appear to be a major site of 193 nm-induced cellular damage because alkali-labile sites were not detected in cells exposed on ice to up to 2 x 10(4) J/m2 of 193-nm radiation. These results indicate that 193-nm radiation produces primary damage on the level of the plasma membrane.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Arachidonic Acids / metabolism
  • Cell Line
  • Cell Membrane / radiation effects
  • Cells, Cultured / radiation effects*
  • Cricetinae
  • Cricetulus
  • DNA / radiation effects
  • Lasers*
  • Mice
  • Mice, Inbred C3H
  • Tetrazolium Salts / metabolism
  • Thiazoles / metabolism

Substances

  • Arachidonic Acids
  • Tetrazolium Salts
  • Thiazoles
  • DNA
  • thiazolyl blue