Efficient singlet-singlet energy transfer in a novel host-guest assembly composed of an organic cavitand, aromatic molecules, and a clay nanosheet

Langmuir. 2013 Feb 12;29(6):1748-53. doi: 10.1021/la305148j. Epub 2013 Feb 1.

Abstract

A supramolecular host-guest assembly composed of a cationic organic cavitand (host), neutral aromatic molecules (guests), and an anionic clay nanosheet has been prepared and demonstrated that in this arrangement efficient singlet-singlet energy transfer could take place. The novelty of this system is the use of a cationic organic cavitand that enabled neutral organic molecules to be placed on an anionic saponite nanosheet. Efficient singlet-singlet energy transfer between neutral pyrene and 2-acetylanthracene enclosed within a cationic organic cavitand (octa amine) arranged on a saponite nanosheet was demonstrated through steady-state and time-resolved emission studies. The high efficiency was realized from the suppression of aggregation, segregation, and self-fluorescence quenching. We believe that the studies presented here using a novel supramolecular assembly have expanded the types of molecules that could serve as candidates for efficient energy-transfer systems, such as in an artificial light-harvesting system.