Hyperpolarized 129Xe MRI of the human lung

J Magn Reson Imaging. 2013 Feb;37(2):313-31. doi: 10.1002/jmri.23844.

Abstract

By permitting direct visualization of the airspaces of the lung, magnetic resonance imaging (MRI) using hyperpolarized gases provides unique strategies for evaluating pulmonary structure and function. Although the vast majority of research in humans has been performed using hyperpolarized (3)He, recent contraction in the supply of (3)He and consequent increases in price have turned attention to the alternative agent, hyperpolarized (129) Xe. Compared to (3)He, (129)Xe yields reduced signal due to its smaller magnetic moment. Nonetheless, taking advantage of advances in gas-polarization technology, recent studies in humans using techniques for measuring ventilation, diffusion, and partial pressure of oxygen have demonstrated results for hyperpolarized (129)Xe comparable to those previously demonstrated using hyperpolarized (3)He. In addition, xenon has the advantage of readily dissolving in lung tissue and blood following inhalation, which makes hyperpolarized (129)Xe particularly attractive for exploring certain characteristics of lung function, such as gas exchange and uptake, which cannot be accessed using (3)He. Preliminary results from methods for imaging (129) Xe dissolved in the human lung suggest that these approaches will provide new opportunities for quantifying relationships among gas delivery, exchange, and transport, and thus show substantial potential to broaden our understanding of lung disease. Finally, recent changes in the commercial landscape of the hyperpolarized-gas field now make it possible for this innovative technology to move beyond the research laboratory.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Administration, Inhalation
  • Contrast Media / administration & dosage
  • Humans
  • Lung / pathology*
  • Lung Diseases / diagnosis*
  • Magnetic Resonance Imaging / methods*
  • Pulmonary Gas Exchange*
  • Radiopharmaceuticals / administration & dosage
  • Respiration Disorders / diagnosis*
  • Respiratory Function Tests / methods*
  • Xenon Isotopes* / administration & dosage

Substances

  • Contrast Media
  • Radiopharmaceuticals
  • Xenon Isotopes