Reversible binding of water, methanol, and ethanol to a five-coordinate ruthenium(II) complex

Dalton Trans. 2013 Mar 28;42(12):4291-8. doi: 10.1039/c3dt32909g.

Abstract

The known green, five-coordinate, square-pyramidal trans-RuCl(2)(P-N)(PPh(3)) complex reversibly binds water, MeOH and EtOH in the vacant coordination site in the solid state and in CH(2)Cl(2) solution to give pink adducts (P-N = o-diphenylphosphino-N,N'-dimethylaniline). The adducts are well characterized, including X-ray analysis of the aqua complex, trans-RuCl(2)(P-N)(PPh(3))(H(2)O), which crystallizes in two different benzene-solvated forms. Comparison of the structural data with those determined previously for the binding of H(2)S, thiols, and H(2), which form cis-RuX(2)(P-N)(PPh(3))L products (X = Cl, Br; L = a S-ligand or H(2)) reveals the trans-influence trend P > H(2)S ~ thiols > H(2) > Cl ~ Br > H(2)O. Thermodynamic data for the binding of water were estimated in solution by UV-Vis spectroscopy, and ΔH(o) data for the aqua and alcohol adducts in the solid state were obtained by differential scanning calorimetry. Inclusion of published data for the S-ligand adducts reveals the thermal stability trend of the solid complexes as MeSH > MeOH > H(2)S > H(2)O > EtSH > EtOH.