Interactions between spinal interneurons and ventral spinocerebellar tract neurons

J Physiol. 2013 Nov 15;591(22):5445-51. doi: 10.1113/jphysiol.2012.248740. Epub 2013 Jan 21.

Abstract

Recent evidence indicates that ventral spinocerebellar tract (VSCT) neurons do not merely receive information provided by spinal interneurons but may also modulate the activity of these interneurons. Hence, interactions between them may be mutual. However, while it is well established that spinal interneurons may provide both excitatory and inhibitory input to ascending tract neurons, the functional consequences of the almost exclusively inhibitory input from premotor interneurons to subpopulations of VSCT neurons were only recently addressed. These are discussed in the first part of this review. The second part of the review summarizes evidence that some VSCT neurons may operate both as projection neurons and as spinal interneurons and play a role in spinal circuitry. It outlines the evidence that initial axon collaterals of VSCT neurons target premotor inhibitory interneurons in disynaptic reflex pathways from tendon organs and muscle spindles (group Ia, Ib and/or II muscle afferents) to motoneurons. By activating these interneurons VSCT neurons may evoke disynaptic IPSPs in motoneurons and thus facilitate inhibitory actions of contralateral muscle afferents on motoneurons. In this way they may contribute to the coordination between neuronal networks on both sides of the spinal cord in advance of modulatory actions evoked via the cerebellar control systems.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Interneurons / physiology*
  • Motor Neurons / physiology
  • Muscle Spindles / physiology
  • Nerve Net / physiology
  • Spinal Cord / physiology*
  • Spinocerebellar Tracts / physiology*