The effect of interferon γ on endothelial cell nitric oxide production and apoptosis

Adv Biomed Res. 2012:1:69. doi: 10.4103/2277-9175.102973. Epub 2012 Oct 31.

Abstract

Background: Nitric oxide (NO) is an important molecule in maintaining endothelial survival and normal function. It is a unique mediator, which may promote or suppress both inflammation and apoptosis. Endothelial cell (EC) injury, dysfunction, and death in response to cytokines, especially interferon gamma (IFN-γ), represent the critical event for the initiation of several inflammatory diseases.

Objective(s): EC injury or death result in endothelial dysfunction that precedes the development of atherosclerosis and its subsequent vascular events. We examine the effect of different concentrations of IFN-γ on human umbilical vein ECs (HUVECs) NO production and apoptosis.

Materials and methods: HUVECs were cultured at 37°C for 24 h in the absence (control) or presence of 10, 100, and 1000 μg IFN-γ, respectively. The apoptotic cells were determined as annexin V-positive propidium iodide (PI)-negative cells by flow cytometry. Total nitrite concentration was measured in cell cultures supernatant by Griess method.

Results: A comparison of the effect of IFN-γ on EC NO production with untreated cells showed that pretreatment of HUVEC with IFN-γ failed to have a significant effect on NO production by these cells at 10 and 100 U/mL, whereas it led to a significant decreased NO production at 1000 U/mL (P < 0.05). The cells stimulated with IFN-γ showed significantly higher apoptotic cells (PI negative and annexin V-positive cells) after 24 h, compared with cells with no stimulations (P < 0.05).

Conclusion: IFN-γ has detrimental effects on ECs in high doses. This might be due to inducible NO synthase activation.

Keywords: Apoptosis; IFN-γ; endothelial cells; nitric oxide.