The aqueous Ca2+ system, in comparison with Zn2+, Fe3+, and Al3+: an ab initio molecular dynamics study

Chemistry. 2013 Feb 25;19(9):3047-60. doi: 10.1002/chem.201202821. Epub 2013 Jan 11.

Abstract

Herein, we report on the structure and dynamics of the aqueous Ca(2+) system studied by using ab initio molecular dynamics (AIMD) simulations. Our detailed study revealed the formation of well-formed hydration shells with characteristics that were significantly different to those of bulk water. To facilitate a robust comparison with state-of-the-art X-ray absorption fine structure (XAFS) data, we employ a 1st principles MD-XAFS procedure and directly compare simulated and experimental XAFS spectra. A comparison of the data for the aqueous Ca(2+) system with those of the recently reported Zn(2+), Fe(3+), and Al(3+) species showed that many of their structural characteristics correlated well with charge density on the cation. Some very important exceptions were found, which indicated a strong sensitivity of the solvent structure towards the cation's valence electronic structure. Average dipole moments for the 2nd shell of all cations were suppressed relative to bulk water.