An effective-charge model for the trapping of impurities of fluids in channels with nanostructured walls

Nanoscale Res Lett. 2013 Jan 10;8(1):19. doi: 10.1186/1556-276X-8-19.

Abstract

: We present model equations for the trapping and accumulation of particles in a cylindrical channel with nanostructured inner walls when a fluid passes through, carrying a moderate load of impurities. The basic ingredient of the model is the introduction of a phenomenological 'effective-charge density' of the walls, related to the electrical charges exposed in the nanotexture. The effective charge is gradually reduced as the flow runs through the channel and the trapped impurities cover the internal walls. Based on the proposed equations, the position and time dependence of the areal density of trapped impurities, and the filtration performance, may be calculated. It is proposed that experimentally testing these results may help to understand the enhanced trapping capability observed in many diverse nanotextured channel structures.