Enormous lattice expansion of hummers graphite oxide in alcohols at low temperatures

ACS Nano. 2013 Feb 26;7(2):1395-9. doi: 10.1021/nn3051105. Epub 2013 Jan 14.

Abstract

A structural study of swelling of Hummers graphite oxide (H-GO) in excess of liquid alcohols was performed as a function of temperature using synchrotron X-ray diffraction and revealed a strong "negative thermal expansion" effect. The increase of the distance between graphene oxide layers is explained by insertion of additional solvent upon cooling of the H-GO/solvent system. The interlayer distance of H-GO is found to increase gradually upon temperature decrease, reaching 19.4 and 20.6 Å at 140 K for methanol and ethanol, respectively. The gradual expansion of the H-GO lattice upon cooling corresponds to insertion of at least two additional solvent monolayers and can be described as osmotic swelling. This phenomenon is distinctly different from the solvation of Brodie graphite oxide (B-GO), which was found earlier to exhibit crystalline swelling: single-step insertion of an additional solvent monolayer at low temperatures. The enormous structural expansion of H-GO at low temperatures is suggested to be useful for solution-based intercalation of graphite oxide with relatively large molecules and the synthesis of various composite materials.

Publication types

  • Research Support, Non-U.S. Gov't