Mutational spectrum of smith-lemli-opitz syndrome patients in hungary

Mol Syndromol. 2012 Nov;3(5):215-22. doi: 10.1159/000343923. Epub 2012 Nov 9.

Abstract

Smith-Lemli-Opitz (SLO) syndrome is an autosomal recessive disorder characterized by multiple congenital abnormalities and mental retardation. The condition is caused by the deficiency of 7-dehydrocholesterol reductase (DHCR7) which catalyzes the final step in cholesterol biosynthesis. Biochemical diagnosis is based on increased concentration of 7-dehydrocholesterol (7-DHC) in the patient serum. Both life expectancy and quality of life are severely affected by the disease. The estimated prevalence of SLO syndrome ranges between 1:20,000 and 1:40,000 among Caucasians. Although the mutational spectrum of the disease is wide, approximately 10 mutations are responsible for more than 80% of the cases. These mutations show a large interethnic variability. There are no mutation distribution data from Hungary to date. Thirteen patients were diagnosed with SLO syndrome in our laboratory. As first-line tests, serum 7-DHC and total cholesterol were measured and, in positive cases, molecular genetic analysis of the DHCR7 gene was performed. Complete genetic background of the disease could be identified in 12 cases. In 1 case only 1 mutation was detected in a heterozygote form. One patient was homozygous for the common splice site mutation c.964-1G>C, while all other patients were compound heterozygotes. One novel missense mutation, c.374A>G (p.Tyr125Cys) was identified.

Keywords: 7-Dehydrocholesterol; Cholesterol; DHCR7; Hungary; Mutation; SLO syndrome.