Conformational dynamics of the human propeller telomeric DNA quadruplex on a microsecond time scale

Nucleic Acids Res. 2013 Feb 1;41(4):2723-35. doi: 10.1093/nar/gks1331. Epub 2013 Jan 4.

Abstract

The human telomeric DNA sequence with four repeats can fold into a parallel-stranded propeller-type topology. NMR structures solved under molecular crowding experiments correlate with the crystal structures found with crystal-packing interactions that are effectively equivalent to molecular crowding. This topology has been used for rationalization of ligand design and occurs experimentally in a number of complexes with a diversity of ligands, at least in the crystalline state. Although G-quartet stems have been well characterized, the interactions of the TTA loop with the G-quartets are much less defined. To better understand the conformational variability and structural dynamics of the propeller-type topology, we performed molecular dynamics simulations in explicit solvent up to 1.5 μs. The analysis provides a detailed atomistic account of the dynamic nature of the TTA loops highlighting their interactions with the G-quartets including formation of an A:A base pair, triad, pentad and hexad. The results present a threshold in quadruplex simulations, with regards to understanding the flexible nature of the sugar-phosphate backbone in formation of unusual architecture within the topology. Furthermore, this study stresses the importance of simulation time in sampling conformational space for this topology.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cluster Analysis
  • DNA / chemistry*
  • G-Quadruplexes*
  • Humans
  • Molecular Dynamics Simulation
  • Potassium / chemistry
  • Telomere / chemistry*
  • Water / chemistry

Substances

  • Water
  • DNA
  • Potassium