Test-retest reliability of graph theory measures of structural brain connectivity

Med Image Comput Comput Assist Interv. 2012;15(Pt 3):305-12. doi: 10.1007/978-3-642-33454-2_38.

Abstract

The human connectome has recently become a popular research topic in neuroscience, and many new algorithms have been applied to analyze brain networks. In particular, network topology measures from graph theory have been adapted to analyze network efficiency and 'small-world' properties. While there has been a surge in the number of papers examining connectivity through graph theory, questions remain about its test-retest reliability (TRT). In particular, the reproducibility of structural connectivity measures has not been assessed. We examined the TRT of global connectivity measures generated from graph theory analyses of 17 young adults who underwent two high-angular resolution diffusion (HARDI) scans approximately 3 months apart. Of the measures assessed, modularity had the highest TRT, and it was stable across a range of sparsities (a thresholding parameter used to define which network edges are retained). These reliability measures underline the need to develop network descriptors that are robust to acquisition parameters.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Brain / anatomy & histology*
  • Connectome / methods*
  • Diffusion Tensor Imaging / methods*
  • Female
  • Humans
  • Image Enhancement / methods
  • Image Interpretation, Computer-Assisted / methods*
  • Male
  • Nerve Fibers, Myelinated / ultrastructure*
  • Nerve Net / anatomy & histology*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Young Adult