Automatic detection and segmentation of kidneys in 3D CT images using random forests

Med Image Comput Comput Assist Interv. 2012;15(Pt 3):66-74. doi: 10.1007/978-3-642-33454-2_9.

Abstract

Kidney segmentation in 3D CT images allows extracting useful information for nephrologists. For practical use in clinical routine, such an algorithm should be fast, automatic and robust to contrast-agent enhancement and fields of view. By combining and refining state-of-the-art techniques (random forests and template deformation), we demonstrate the possibility of building an algorithm that meets these requirements. Kidneys are localized with random forests following a coarse-to-fine strategy. Their initial positions detected with global contextual information are refined with a cascade of local regression forests. A classification forest is then used to obtain a probabilistic segmentation of both kidneys. The final segmentation is performed with an implicit template deformation algorithm driven by these kidney probability maps. Our method has been validated on a highly heterogeneous database of 233 CT scans from 89 patients. 80% of the kidneys were accurately detected and segmented (Dice coefficient > 0.90) in a few seconds per volume.

MeSH terms

  • Algorithms*
  • Data Interpretation, Statistical
  • Humans
  • Imaging, Three-Dimensional / methods*
  • Kidney Diseases / diagnostic imaging*
  • Pattern Recognition, Automated / methods*
  • Radiographic Image Enhancement / methods
  • Radiographic Image Interpretation, Computer-Assisted / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Tomography, X-Ray Computed / methods*